Rotary Measuring Technology Incremental shaft encoder

High resolution Type 5805

- Sturdy model to industry standard, Ø58 mm housing
- Resolution up to 36000 ppr (internally interpolated)
- Pulse frequency up to 800 kHz
- IP 65
- Temperature and ageing compensation
- Short-circuit proof outputs
- Reverse connection protection (at $U_B = 10 \dots 30 \text{ V DC}$)
- Highly flexible PUR-cable

- High shaft load
- Many variations, also customized versions
- Alarm output (optional)
- (x) available as explosion proof zone 2 and 22

Pulse rates available at short notice:

6000, 7200, 8000, 8192, 9000, 10000, 18000, 25000, 36000

Other pulse rates on request

Mechanical characteristics:

Speed:	max. 12000 min ⁻¹
Rotor moment of inertia:	appr. 1,8 x 10 ⁻⁶ kgm ²
Starting torque:	< 0,01 Nm
Radial load capacity of shaft*:	80 N
Axial load capacity of shaft:*:	40 N
Weight:	appr. 0,4 kg
Protection acc. to EN 60 529:	IP 65
Working temperature:	–20 °C +85 °C¹)
Operating temperature:	-20 °C +90 °C ¹⁾
Shaft:	stainless steel
Shock resistance acc. to DIN-IEC 68-2-27	1000 m/s ² , 6 ms
Vibration resistance acc. to IEC 68-2-6:	100 m/s ² , 10 2000 Hz

^{*}View also diagrams on page 25 1)Constant trailing: -20 ... +70 °C

Electrical characteristics:

Output circuit:	RS 422 (TTL-compatible)	Push-pull					
Supply voltage:	5 V (±5%) or 10 30 V DC 10 30 V DC						
Power consumption (no load)	-	typ. 90 mA /					
without inverted signal:		max. 135 mA					
Power consumption (no load)	typ. 70 mA /	typ. 115 mA/					
with inverted signals:	max. 120 mA	max.160 mA					
Permissible load/channel:	max. ±20 mA	max. ±30 mA					
Pulse frequency:	max. 800 kHz	max. 600 kHz					
Signal level high:	min. 2,5 V	min. U _B – 2,5 V					
Signal level low:	max. 0,5 V	max. 2,0 V					
Rise time t _r	max. 200 ns	max. 1 µs					
Fall time t _f	max. 200 ns	max. 1 µs					
Short circuit proof outputs: ¹⁾	yes ²⁾	yes					
Reverse connection protection at UB:	no; 10 30 V: yes	yes					
Conforms to CE requirements acc. to EN 61000-6-1, EN 61000-6-4 and EN 61000-6-3							

¹⁾When supply voltage correctly applied

Terminal assignment

Signal:	0V	0V	+U _B	+U _B	Α	Ā	В	B	0	0	Shield
		Sensor2)		Sensor2)							
12 pin plug, Pin:	10	11	12	2	5	6	8	1	3	4	PH ¹⁾
Cable colour:	WH	WH	BN	BN	GN	YE	GY	PK	BU	RD	
	0,5 mm ²		0,5 mm ²								

¹⁾PH = Shield is attached to connector housing

www.kuebler.com 3/2005

 $^{^{2)}}$ Only one channel at a time: (when $U_B = 5$ V, short-circuit to channel, 0 V, or $+U_B$ is permitted.) (when $U_B = 10 \dots 30$ V short-circuit to channel or 0 V is permitted.)

The sensor cables are connected to the supply voltage internally if long feeder cables are involved they can be used to adjust or controll the voltage at the encoder

⁻ If the sensor cables are not in use, they have to be insulated or 0 V_{Sensor} has to be connected to 0 V and $U_{BSensor}$ has to be connected to U_B

Using RS 422 outputs and long cable distances, a wave impedance has to be applied at each cable end.
Insulate unused outputs before initial startup.

Rotary Measuring Technology Incremental shaft encoder

© 0.2 A

1 0.1 A

High resolution Type 5805

8.5805.XXXX.XXXXX

Prefered types are

fat marked

Mounting advice:

Do not connect encoder and drive rigidly to one another at shafts and flanges! Always use couplings to prevent shaft overload (see accessories chapter).

Top view of mating side, male contact base:

Order code:

Range Flange

- Clamping flange ø 58
- Synchronous flange ø 58

Shaft

- 1 = ø 6 mm x 10 mm
- 2 = ø 10 mm x 20 mm

Type of connection and supply voltage

- RS 422 (with inverted signal) 5 V supply voltage
- RS 422 (with inverted signal) 10 ... 30 V supply voltage
- Push-pull (with inverted signal) 10 ... 30 V supply voltage
- Push-pull (without inverted signal) 10 ... 30 V Supply voltage

Pulse rate

(e.g. 18000 pulses=> 18000)

Type of connection

- Cable axial (1 m PUR-Cable) 1 =
- Cable radial (1 m PUR-Cable)
- axial 12 pin plug without mating
- radial 12 pin plug without mating

Accessories:

Corresponding mating connector of connection type 3 or 5: Art.-no. 8.0000.5012.0000

Further accessories see accessories chapter